

Potassium Homeostasis

- Normal adult total body K⁺ 50-55 mMol/kg; >95% intracellular
- Avg daily turnover 50-150 mMol;
 - excretion 90% renal,
 - 10% GI;
 - aldosterone \uparrow 's excretion
- ICF/ECF distribution
 - Na/K ATPase in cell membranes
 - Insulin increases intracellular potassium
 - β_2 adrenergic receptor increases intracellular K⁺
 - exchange with H⁺ (variable effect of pH on K⁺)

Pseudohyperkalemia

- <u>Result of collection/preparation of blood specimen</u>
- Fist-clenching during phlebotomy
- Prolonged tourniquet application
- Hemolysis due to traumatic venipuncture
- Delayed processing of sample (esp when on ice)
- Severe leukocytosis (> 100x10³/uL) or thrombocytosis (> 1000x 10³/uL)

Hyperkalemia- Causes

- Renal insufficiency (GFR<30 increases risk)
- Decreased Aldosterone
 - ACE inhibitors; A-II receptor blockers (ARBs); heparin; adrenal insufficiency
 - When kidney and RAAS are normal normal K is maintained despite wide extremes in intake
- Inhibitors of renal secretion of K⁺
 - spironolactone/eplerenone (aldosterone antagonists)
 - triamterene, amiloride, trimethoprim

Hyperkalemia- Clinical Presentation

- Conduction disturbances on ECG \pm skeletal muscle weakness
 - may develop at serum K>6.5
 - Cardiotoxicity present in ~all cases with serum K>8 mmol/L
- ECG changes:
 - − ↑ T-wave appears 1st –not dangerous
 - $-\downarrow$ P-wave, \uparrow PR, \uparrow QRS -should be treated immediately
 - potentially lethal dysrhythmias
- "the first symptom of hyperkalemia is death"

Increasing Incidence of Drug-Induced Hyperkalemia

Canadian study (NEJM 2004; 351:543):

- >7-fold increase in Rx's for spironolactone from 1998 to 2001 after publication of RALES CHF trial
- mostly in elderly CHF pts who also were on ACE inhibitors, many also had ↓'d renal fcn
- 3-fold increase in hospital admissions for hyperkalemia, and 2-fold increase in deaths associated with hyperkalemia in same time period

Strategy for Patients at Risk for Drug-Induced Hyperkalemia

- Assess renal function- GFR<30 higher risk
- Diabetes, decompensated CHF, advanced age, multiple drugs that affect K⁺ - higher risk
- Reduce K⁺ intake- K⁺ supplements, salt-substitutes, herbals/supplements (e.g. coconut water, noni juice, alfalfa, dandelion, horsetail, nettle)
- Avoid adding aldosterone antagonist Rx if baseline serum K>5.0 mmol/L

- Limit spironolactone dose to 25mg/d if on ACE-I, and avoid spironolactone if on ACE-I & GFR<30
- Check serum K⁺ at 3 and 7days after start Rx or [↑] dose of aldosterone antagonist
 - If K⁺ rises, but not >5.5 mMol/L, adjust drugs
 - If K⁺ >5.5 mMol/L, discontinue drug

15

Therapy for Hyperkalemia

- Minimize K intake
- 1. Physiological antagonism of membrane actions – IV *Calcium* if acute ECG disturbances
- 2. Intracellular shift with *Insulin*, β_2 -agonist
- 3. Removal from body with *renal excretion*, *dialysis*, *Na Polystyrene Sulfonate, patiromer; zirconium silicate*

Mechanism	Action	
Antagonism of membrane actions	 Intravenous calcium** 	
Extracellular to Intracellular shift	 Insulin and glucose Sodium bicarbonate (esp if metabolic acidosis Beta-2 adrenergic agonists 	
K removal from body	 Renal excretion - Loop/thiazide diuretics K binders Dialysis (HD if severe) 	
** Calcium should be combined with therapies	that shift K intra-cellularly (not used in monotherapy	

Intracellular K⁺ Shift for Hyperkalemia

• Insulin

- IV push 10-20 units regular insulin + 25 g 50% dextrose (glucose)
- or IV infusion of 500-1000 ml 10% dextrose with insulin 20u over 1 hr
- if blood glucose is elevated, inject insulin without dextrose
- onset <15 min, duration several hrs

Beta₂ agonist

- albuterol 20 mg per nebulizer
- or terbutaline 7 mcg/kg s.c. injection
- onset <30 min; duration about 2 h</p>
- works best as combination with insulin Rx
- Caution in patient with heart disease
- <u>Na Bicarbonate-</u> variable response; use only if patient has metabolic acidosis in addition to hyperkalemia

Potassium Removal

Renal Excretion

- if renal fcn is ok; ± thiazide or loop diuretic

- Dialysis
 - hemodialysis rapidly lowers serum K+
- Na Polystyrene Sulfonate (Kayexalate®; SPS)
 - Na/K exchange in gut
 - maximum 0.3-1.0 mEq K+ exchanged per g resin
 - given 15-30 g p.o. or 50 g as retention enema
 - sorbitol 33% added in suspension dosage forms to prevent constipation
 - Small risk of serious intestinal mucosal injury; FDA recommends not using with sorbitol; most reports associated with 70% sorbitol + SPS
 - Onset about 2 hr; maximal effect within 6 hrs; repeat doses if needed q 4-6 hrs.
 - Old drug without any definitive studies that demonstrate efficacy- questions of potential benefit vs potential risk

New Oral K-Binder Drugs

• Patiromer (Veltassa®)

- FDA-approved for Rx of mild-moderate hyperkalemia
- Black-box warning to avoid taking with other oral medications within 6 hrs
- Powder packets to suspend in water, dosed once daily;
 - start 8.4 g & increase q week if necessary to max 25.2 g; 30 packets cost ~\$600
- May allow CHF and CKD pts to continue RAAS inhibitors or spironolactone Rx
- Side effects:
 - Constipation
 - Hypomagnesemia
- Drug interactions:
 - Decreases serum concentration of: ciprofloxacin, levothyroxine, metformin

Summary- Hyperkalemia		
 Causes- note importance of renal function & drug Rx intake vs excretion; 150 mEq total body excess may be severe 		
 Presentation- -cardiotoxicity & muscle weakness 		
 Treatment- Antagonize cardiotoxicity (i.v. calcium) Shift K⁺ into cells (insulin, β2 agonist) Remove K⁺ (kidneys, dialysis, K-binder agents) Multiple Rx for overlapping time courses & increased efficacy 		

Intravenous Admixtures of Hyperkalemia

Agent	Solution	Administration
Calcium Gluconate	1000 mg (10 mL of a 10% solution)	Over 2-3 min
Calcium carbonate	500-1000 mg (5-10mL of a 10% solution)	Over 2-3 min
Insulin	10-20 units in 500 mL of 10% dextrose OR 10 unit bolus, then 50 mL of 50% dextrose (25 g glucose)	Over 60 min
Furosemide	40 mg IV BID (if hypervolemic with good renal function) 40 mg IV BID with isotonic saline to correct volume if euvolemic or hypovolemic	