- MOA: smooth muscle relaxation (vasodilation)
- negative inotropic and chronotropic effects
- 3 classes:
 - benzothiazepines (diltiazem)
 - phenylalkylamines (verapamil)
 - dihydropyridines (nifedipine, amlodipine)
- all have similar antihypertensive effects
- Reflex neurohormonal or sympathetic activation

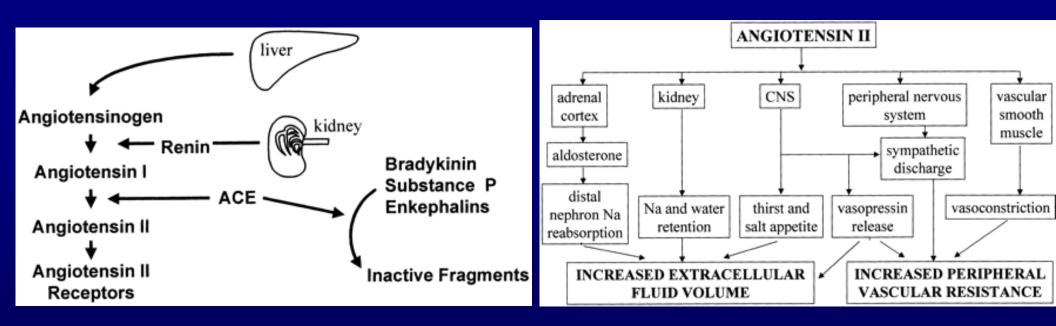
- Benzothiazepines and phenylalkylamines
 - (Diltiazem and Verapamil)
 - coronary and systemic vasodilation,
 - ↓ myocardial contractility, HR, and AV node conduction
- Dihidropyridines
 - (Amlodipine, felodipine, nifedipine, etc.)
 - coronary and systemic vasodilation,
 - 0 or ↓ myocardial contractility,
 - 0 or ↑ HR, no effect on AV node

- pharmacotherapy issues
 - increase in mortality (?)
 - possible ↑ risk of MI with short-acting CCB (primarily nifedipine)
 - Studies show decrease mortality in hypertension similar to conventional drugs
 - INSIGHT and NORDIL studies (Lancet 2000; 356:359-65;366-72.)

<u>Advantages</u>

- response in elderly for systolic hypertension
- effective in CAD, reducing angina sx
- Once daily dosing
- additive BP-lowering effects with ACEI, BB
- neutral on lipids/glucose
- Reduction in CV mortality similar to conventional therapy

<u>Disadvantages</u>


- Increase MI with short-acting agents FDA warning
- Generally more expensive
- Caution in heart failure (only use amlodipine, felodipine)
- SE:
 - constipation,bradycardia, AV block, CHF (verapamil, diltiazem)
 - edema, dizziness, HA, tachycardia (especially dihydropyridines)
 - gingival hyperplasia (nifedipine)

CCB Drug Interactions

- Diltiazem CYP3A4 and PGP inhibitor
- Verapamil CYP3A4 and PGP inhibitor
- Nifedipine CYP3A4 substrate
- Amlodipine CYP3A4 substrate
- Felodipine CYP3A4 substrate

ACE Inhibitors

MOA: inhibits conversion of Ag I to Ag II

e.g. ramipril, enalapril, lisinopril, benazepril, etc.

ACE Inhibitors

- promote regression of left ventricular hypertrophy
 - Improve systolic and diastolic function
- pharmacotherapy issues
 - Decrease mortality in CHF (symptomatic and asymptomatic)
 - Decrease progression of DM nephropathy
 - Decrease progression of CKD
 - Decrease mortality from CV causes, MI, stroke in high-risk patients

Drug Interactions - ACE Inhibitors

- Do not use salt substitutes with ACE-I (they contain potassium)
 - Instruct patients to use Mrs. Dash or herbs
- Careful using concomitantly with K⁺ supplements, K⁺ sparing diuretics, spironolactone

ACE Inhibitors

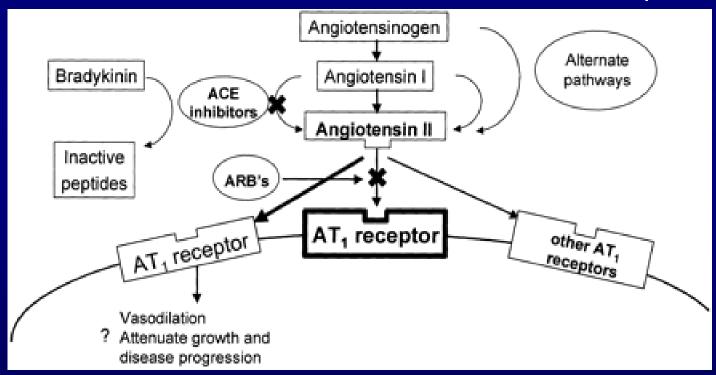
<u>Advantages</u>

- highly effective in whites and younger pts
 - ↑ response in African Americans with diuretic
- neutral on lipids
- DM nephropathy renal protective
- improve survival in heart failure
- ↓ mortality in hypertension similar to conventional therapy (CAPP, ALLHAT, STOP-2 studies)

ACE Inhibitors

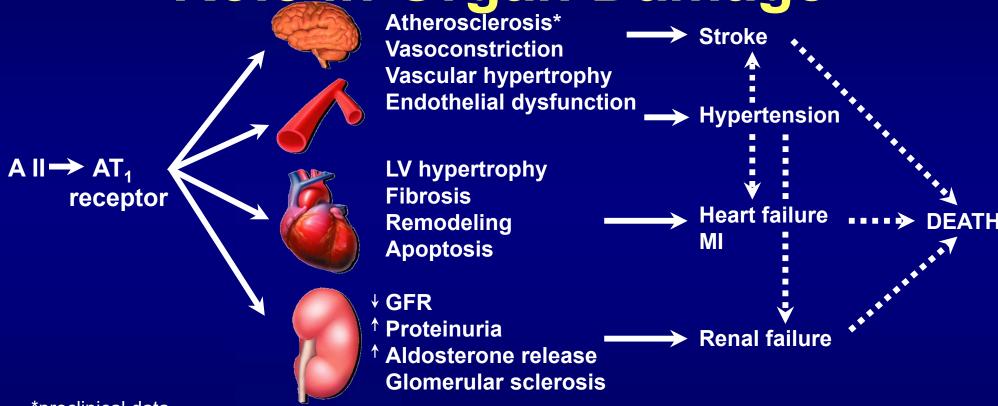
<u>Disadvantages</u>

- hypotensive response in renovascular HTN, CHF, hypovolemia, addition of diuretic
- cough (~10%)
 - consider switching to ARB
- contraindicated in:
- pregnancy
- bilateral renal arte
- stenosis (RAS)



- SE:
 - rash,
 - angioedema,
 - hyperkalemia,
 - Acute kidney injury (if bilateral RAS present)
- Monitoring:
 - serum creatinine, K+
 - At baseline
 - After 2 weeks
 - Then periodically

Arch Dis Child 2003;88:938-939


Angiotensin II Receptor Blockers (ARBs)

Competitively inhibits Ang II at AT₁ receptor

e.g. losartan, valsartan, candesartan, etc.

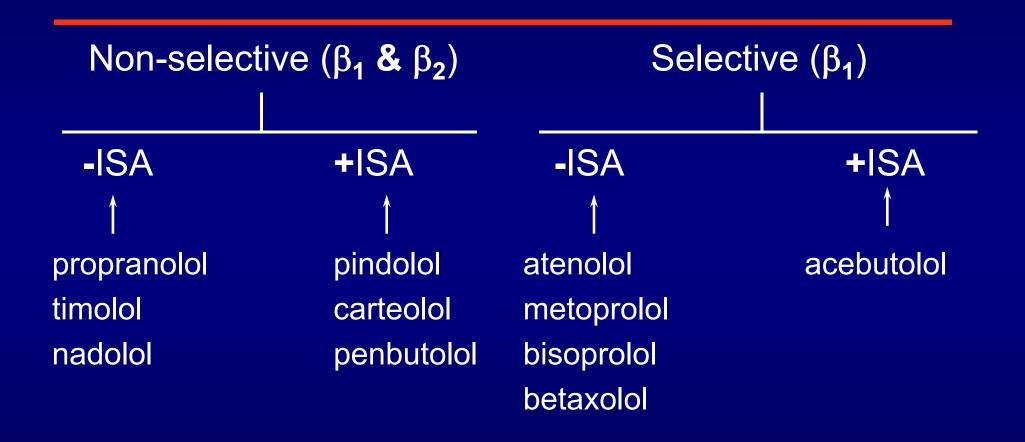
Angiotensin II Plays a Central Role in Organ Damage

*preclinical data LV = left ventricular; MI = myocardial infarction; GFR = glomerular filtration rate

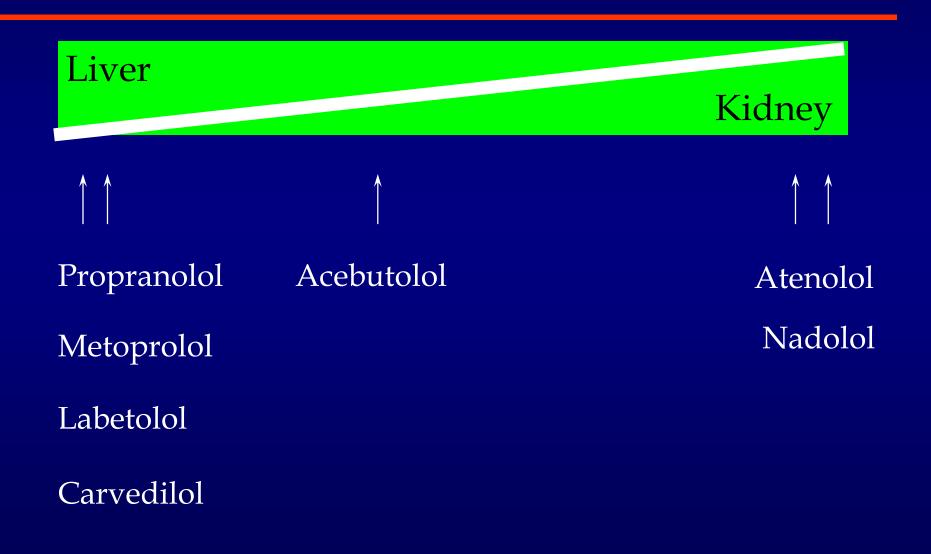
Adapted from Willenheimer R et al *Eur Heart J* 1999; 20(14): 997–1008, Dahlöf B *J Hum Hypertens* 1995; 9(suppl 5): S37–S44, Daugherty A et al *J Clin Invest* 2000; 105(11): 1605–1612, Fyhrquist F et al *J Hum Hypertens* 1995; 9(suppl 5): S19–S24, Booz GW, Baker KM *Heart Fail Rev* 1998; 3: 125–130, Beers MH, Berkow R, eds. *The Merck Manual of Diagnosis and Therapy*. 17th ed. Whitehouse Station, NJ: Merck Research Laboratories 1999: 1682–1704, Anderson S *Exp Nephrol* 1996; 4(suppl 1): 34–40, Fogo AB *Am J Kidney Dis* 2000; 35(2):179–188

Angiotensin II Receptor Blockers

Advantages:


- Similar beneficial effects as ACEI
 - CV, renal outcomes, DM
 - No lipid, glucose changes
- Useful in combination with other antihypertensives

<u>Disadvantages:</u>


- More expensive
- Concerns about cancers and CV events
- Not free of ACEI-type side effects:
 - dizziness
 - cough (< than ACEI)</p>
 - angioedema
 - hyperkalemia

- Third-line therapy
- MOA = multi-factorial
 - CO by negative chronotropic and inotropic effects
 - ↓ renin release; ↓ PVR
- Differentiated by:
 - cardioselectivity (dose-dependent)
 - intrinsic sympathomimetic activity (ISA)
 - Metabolism
 - Alpha-beta blockade (carvedilol, labetalol)

ISA = intrinsic sympathomimetic activity ~ mixed agonist/antagonist properties

Advantages

- modest cost
- once-twice daily dosing
- decrease CAD mortality and progression
- decrease mortality post-MI (avoid agents with ISA)
- >effective in whites and younger pts.
- ↓ M & M in CHF (metoprolol, bisoprolol, carvedilol)
- No routine lab monitoring necessary

Beta-Blockers - Disadvantages

- Diabetes
 - glucose intolerance; mask hypoglycemia
 - Carvedilol vs Metoprolol
- May increase lipids
- asthma/COPD
- caution in CHF
- Questions about atenolol Lancet. 2004;364:1684-1689.

- angina with ISA agents
- sexual dysfunction
- ↓ exercise capacity
- withdrawal syndrome (rebound hypertension)
 - taper 1/2 dose q 2-3 days over 2 wk
- SE: bradycardia, tiredness, cold ext., CNS

Newest Beta-Blocker

- Nebivolol (Bystolic®)
 - Selective beta-1 antagonist
 - Causes vasodilation via nitric oxide release
 - Similar tolerance to carvedilol
 - Better side effect profile?
 - Not yet fully demonstrated
 - May have better effects on glucose in diabetics compared to other beta-blockers

Beta-blockers – Utility Questioned

- Beta blockers (especially atenolol) are:
 - Less effective than other antihypertensives in reducing stroke.
 - Beta blockers less effectively reduce central systolic BP
 - May be explained by once daily dosing of atenolol (better results obtained with twice daily dosing)
 - Authors argue: beta-blockers should not be first line antihypertensives or second drug added to diuretic.

Lindholm et al. Lancet 2005;366:1545-1553

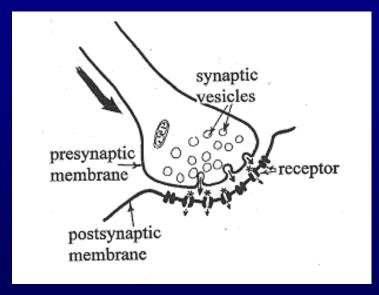
Beta-blockers – Utility Questioned

Trials comparing beta-blockers with other antihypertensives

Outcome	Relative risk with beta blockers	95% CI
Stroke	1.16	1.04-1.30
MI	1.02	0.93-1.12
All-cause mortality	1.03	0.99-1.08

Atenolol vs other antihypertensives

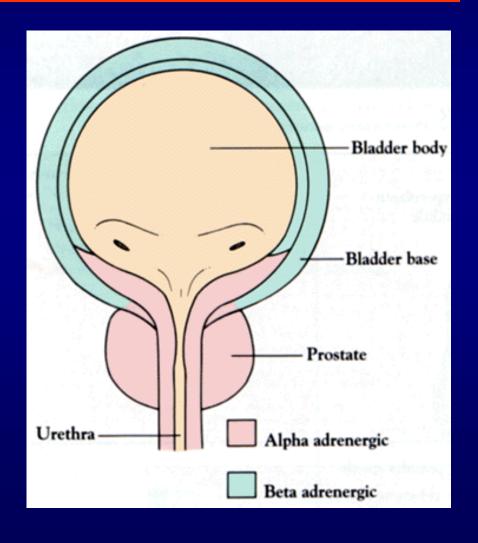
Outcome	Relative risk with atenolol	95% CI
Stroke	1.26	1.15- 1.38
MI	1.05	0.91- 1.21
All-cause mortality	1.08	1.02- 1.14


Lindholm et al. Lancet 2005;366:1545-1553

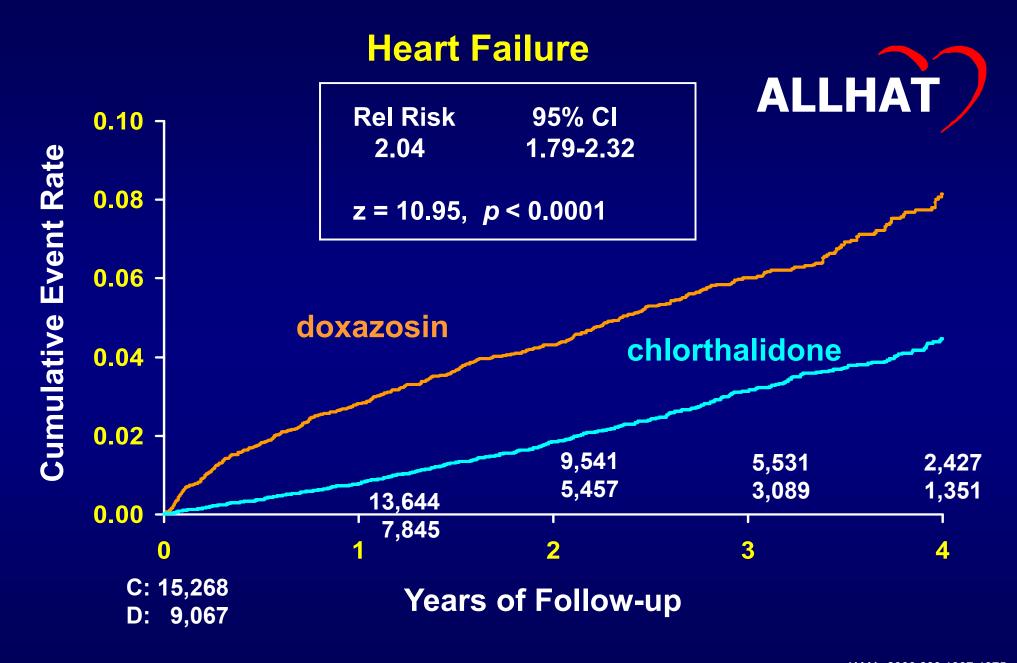
Beta-blockers Drug Interactions

Medication	Interaction
Cimetidine	Decreased metabolism of metoprolol, labetalol, propranolol
Amiodarone	Hypotension, bradycardia
Ritonavir	Increased metoprolol concentrations
Digoxin	AV nodal block
CYP2D6 inhibitors -SSRIs	Increased metoprolol concentrations
St. John's Wort	Decreased effectiveness of beta-blockers
Diltiazem Verapamil	Increased bradycardia, hypotension, and AV conduction abnormalities

Alpha 1 Antagonists


- MOA: inhibit efferent sympathetic activity
 - selective for α_1 avoids reflex tachycardia associated with non-selective α blockers

e.g. doxazosin, prazosin


Alpha 1 Antagonists

- Monotherapy or alternative therapy
- Advantages
 - positive impact on lipids (↓ TC, LDL, TG, ↑ HDL)
 - improve BPH symptoms

Alpha 1 Antagonists

- Disadvantages
 - hypotension with 1st dose ("1st dose phenomenon)
 - transient dizziness or faintness; syncope
 - take first dose at HS
 - Not recommended as initial monotherapy for HTN (ALLHAT study)
 - SE: HA, fatigue, drowsiness, weakness, vivid dreams

Central Alpha 2 Agonists

- MOA: stimulate central alpha₂ receptors
 - inhibit sympathetic outflow, ↓ NE, ↓ HR, ↓ CO, ↓ PVR
- Advantages
 - cheap
 - neutral effects on lipids
 - clonidine patch
 - methyldopa safe in pregnancy

e.g. clonidine, methyldopa, guanfacine

Central Alpha 2 Agonists

- Disadvantages
 - withdrawal syndrome
 - ■rebound hypertension due to ↑ in NE
 - SE:
 - CNS sedation, ↓ alertness, depression
 - dry mouth, bradycardia, sodium and fluid retention (methyldopa)