Potassium Balance and Management of Hypokalemia

> John M. Dopp, Pharm.D. Associate Professor (CHS)

Objectives

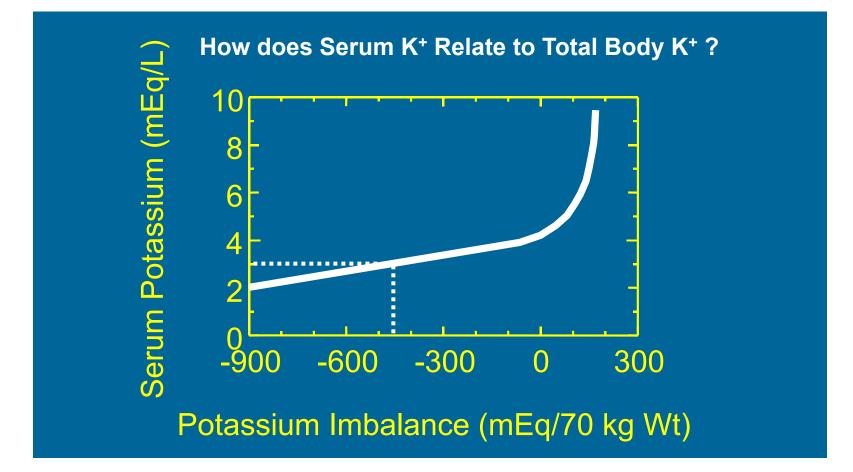
- 1. Understand normal potassium homeostasis, ICF/ECF balance, and the relationship of serum K to total body K
- 2. Understand how disease and drug therapy can cause hypokalemia
- 3. Recognize the clinical manifestations of hypokalemia
- 4. Design K-replacement therapy appropriate for an individual patient
- 5. Know commonly used drugs that may alter distribution or excretion of K

Suggested Reading

Pharmacotherapy - 11th edition Chapter 68 – Disorders of Potassium and Magnesium Homeostasis

Pages 797-811

PHARMACOTHERAPY A Pathophysiologic Approach



Ioseph T. DiPire + Cary C. Yee + L. Michael Posey Stuart T. Haines + Thomas D. Nolin + Vicki Ellingrad

Potassium Homeostasis Intake Normal adult total body K⁺ 100 mEq 50-55 mMol/kg; >95% intracellular Extracellular space Cell Shift Intracellular space 70 mEq • Avg daily turnover 50-150 3500 mEq (3.5-5.5 mEq/L)Muscle 2700 mEq Liver 250 mEq Insulin mMol; excretion **B**₂-stimulation Erythrocytes 250 mEq Bone 300 mEq Kidney excretion Colonic secretion 90 mEq 10 mEq 90% renal, 10% GI; Lumen K^+ NKCC- 2CF aldosterone ↑'s excretion Kidney 360 2020;1:65-71

Potassium Homeostasis

- Aldosterone secretion is modulated by K level
- ICF / ECF distribution
 - Na/K ATPase in cell membranes
 - Insulin increases intracellular K
 - β_2 adrenergic receptor stim. (e.g. epinephrine) \uparrow intracellular K
 - exchange with H⁺ (variable effect of pH on K)
- Serum K⁺ normally 3.5-4.8 mMol/L

Classification of Hypokalemia

Category	Serum Potassium Range (mmol/L)
Mild	3.1 – 3.5
Moderate	2.5 - 3.0
Severe	< 2.5

- Hypokalemia is a serious occurrence and problem
- Hypokalemia increases mortality in patients with heart failure or CKD

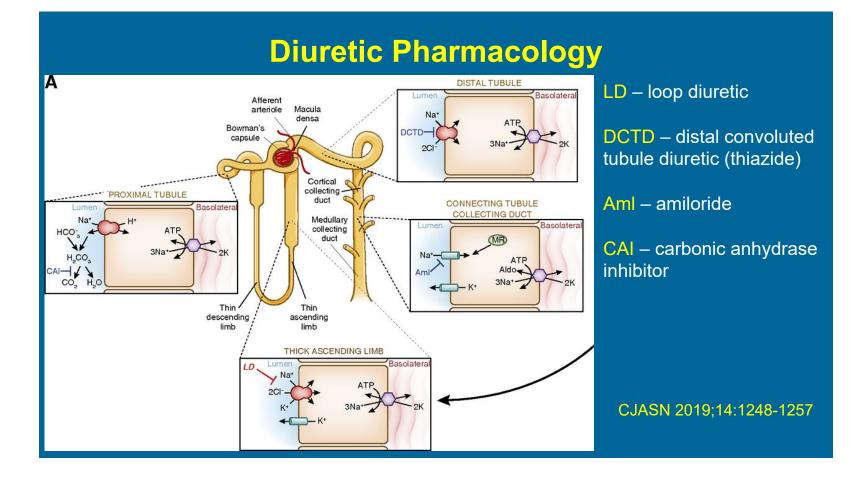
Circ Heart Fail 2010;3:253-260

Causes of Hypokalemia

- Poor diet
 - unlikely as sole cause, unless marked, prolonged reduction in food intake

Intracellular shift

- Insulin;
- $-\beta_2$ agonist use, endogenous sympathetic tone (epinephrine);
- alkalemia;
- xanthines
- GI losses:
 - diarrhea, vomiting, laxative or enema abuse


Causes of Hypokalemia

• Urinary losses

- mineralocorticoid excess (aldosterone; steroid Rx)
- ^'d Na excretion- high Na intake, diuretic Rx, osmotic diuresis, saltwasting nephropathies
- magnesium deficiency
- metabolic alkalosis
- high dose Rx with penicillin class; amphotericin B Rx

Potassium and Diuretic Therapy

- K losses are related to the amount of Na excreted:
 greatest during Rx of edema or when Na intake high
- Hypokalemia associated with diuretics most common early after start of Rx or after increase in dose- not common during chronic maintenance diuretic Rx for hypertension
- K-sparing diuretics are effective to avoid hypokalemia, but risk of hyperkalemia if K intake increases or reduced renal function

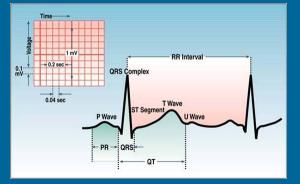
Manifestations of Hypokalemia

Muscle weakness/paralysis

- associated with serum K < 2.5 mMol/L
- gut (constipation or ileus)
- skeletal muscle
 - lower extremities most sensitive;
 - cramps, tetany, paresthesia, weakness, tenderness; ischemiarhabdomyolysis, myoglobinuria

Manifestations of Hypokalemia

Cardiac effects

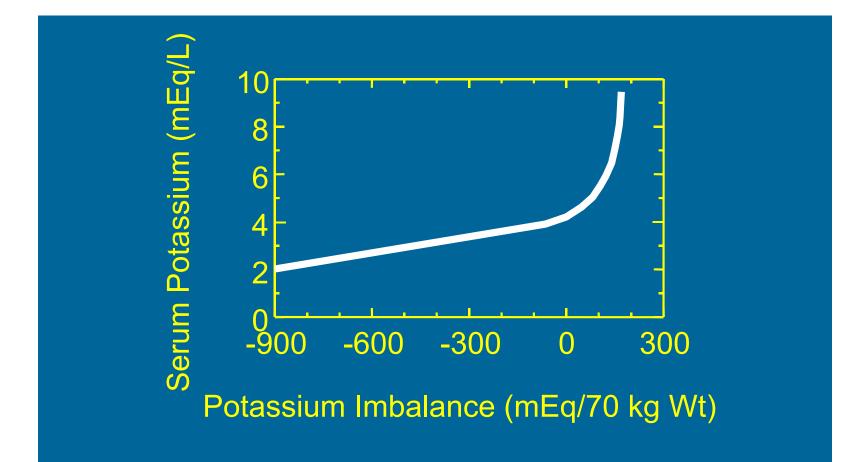

- U-waves; digitalis toxicity;
- arrhythmias in unhealthy hearts

Renal effects

- impaired concentrating ability;
- metabolic alkalosis

Glucose intolerance

- depressed insulin secretion



https://ecg.utah.edu/lesson/12

Management of Hypokalemia

Serum K ⁺	Treatment
3.0 <k<3.5< td=""><td>Usu asymptomatic; p.o. supplement if on digitalis, otherwise dietary K adequate</td></k<3.5<>	Usu asymptomatic; p.o. supplement if on digitalis, otherwise dietary K adequate
2.5 <k<3.0< td=""><td>Treat with p.o. supplements (40-60 mMol, 3- 4X/day until serum K >3.0)</td></k<3.0<>	Treat with p.o. supplements (40-60 mMol, 3- 4X/day until serum K >3.0)
2.0 <k<2.5< td=""><td>Some clinical manifestations likely; Rx promptly with p.o. supplements; i.v. supplement if p.o. route questionable or if receiving i.v. fluids</td></k<2.5<>	Some clinical manifestations likely; Rx promptly with p.o. supplements; i.v. supplement if p.o. route questionable or if receiving i.v. fluids
K<2.0	Severe hypokalemia with probable total body deficit 400-900 mMol K; i.v. supplement should start immediately

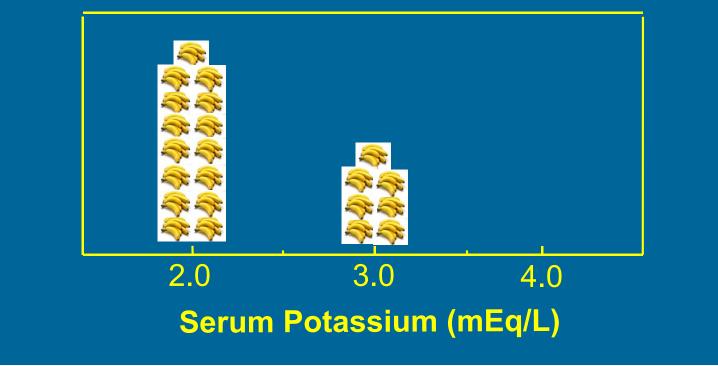
Oral Potassium Supplements

- Choice of salt
 - See table on next slide
- Choice of dosage form
 - Solutions effective, inexpensive, unpalatable
 - Wax matrix tablets (8, 10 mMol)
 - Microencapsulated capsules (8, 10 mMol) **
 - Sustained release microencapsulated particles (10, 20 mMol) **

** microencapsulated formulations produce fewer GI erosions compared to wax-matrix tablets

Supplement	Comments/Uses
KCI	 preferred in most cases; Cl⁻ deficit commonly accompanies K⁺ deficit (e.g. gastric losses, diuretics)
Non-Chloride salts - Bicarbonate - Citrate - Gluconate	 Bicarbonate useful when bicarbonate deficit (metabolic acidosis) also present (e.g. lower GI losses) Citrate largely used for kidney stones not as potassium supplement
K Phosphate	Useful when phosphate deficit also present

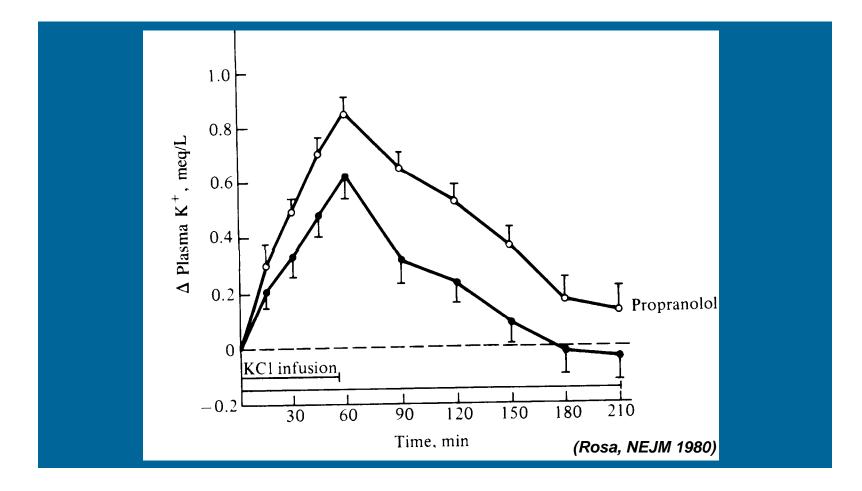
Oral Potassium Supplements


- In acute care 10 mmol of IV or oral K should increase serum K by 0.1 mmol/L.
- Oral supplementation should be used when possible
- Oral daily dose should be divided TID or QID with food

Dietary Sources of Potassium

Grams of food needed to obtain 10-12 mMol K⁺

- Lean meat or chicken 120 g
- Fruits
 - banana 150 g; orange juice 250 g; oranges 200 g; grapes 200 g; pears 400 g; apples 450 g
- Vegetables
 - cauliflower 150g; mushrooms 100g; potatoes 100g; broccoli 150g; carrots 250g; lettuce 200 g; spinach 100g; tomatoes 200g
- Legumes
 - canned beans 230g; peas 260g; dry chickpeas 60g
- Salt Substitute 1 g KCl


Number of Bananas Needed to Restore Potassium Balance

Cautions for Potassium Rx

Potassium levels may rise higher than expected if compromised ability to excrete K or shift K into ICF normally - Decreased renal function - K-sparing diuretic • spironolactone, amiloride, triamterene - Trimethoprim - Heparin - ACE inhibitor or ARB

– Beta-2-blocker

Intravenous Potassium Therapy

- In patients receiving i.v. fluid via peripheral vein, may include up to 40 mMol K per liter
- Higher concentrations tolerated via central vein- use pump for safety
- Often administered as piggyback i.v. in 10 mMol increments, infused over an hour

Intravenous Potassium Therapy

- For urgent situations:
 - 10-20 mMol/hr infusion rate via central vein
 - Use dextrose-free i.v. fluid (normal saline)
 - Dextrose solutions stimulate insulin secretion worsens hypokalemia by shifting K intracellularly
 - Monitor ECG for \geq 10 mMol/hr
 - 40 mMol/hr- extreme emergency
 - Measure serum K every 2-4 hours

