Choosing an Opioid

Paul Hutson, PharmD, BCOP paul.hutson@wisc.edu

Objectives

Describe the relative advantages of one opioid over another,
and what clinical conditions might favor one over another

Required Reading

 Herndon, C, et al. Pain Management in Chapter 77 of DiPiro's Pharmacotherapy (11th ed) (or Chapter 60 in the 10th ed.)

Commonly used Oral Opioids

- Morphine
- Oxycodone
- Hydrocodone (with acetaminophen)
- Less Commonly used are:
 - Hydromorphone
 - Tramadol
 - Tapentadol
 - Codeine (discouraged, off many formularies)

Commonly used IV Opioids

- Morphine
- Hydromorphone
- Fentanyl

- Less commonly used:
 - Methadone
 - Buprenorphine
 - Codeine (discouraged)

Choosing An Opioid – Typically Avoid

- Codeine +/- APAP
 - Pro-drug → morphine via CYP2D6
 - Up to 30% slow metabolizers → no effect
 - Ultra-fast metabolizers → increased effect → sedation, respiratory depression, even deaths
 - High N/V rate

Choosing An Opioid – Typically Avoid

- Tramadol (Ultram)
 - Weak serotonin, norepinephrine reuptake inhibitor as well as opioid receptor agonist
 - A CYP2D6 substrate (prodrug) (viz., codeine)
 - Increased seizure risk
 - Serotonin syndrome risk due to SSRI-like effects
 - Drug interactions
 - Association with hypoglycemia
 - Accumulates in liver and renal insufficiency AVOID

Choosing An Opioid – Typically Avoid

Meperidine

- Short-acting, causes CNS excitability/seizures due to metabolite build-up
- Not reversed by naloxone
- Rarely used for pain in US, if ever anymore.
- More commonly used IV for the treatment of severe rigors

Which Oral Opioid to Use?

Morphine

– PROs:

- Least expensive
- Multiple ER and IR formulations, including liquids
- Few pharmacokinetic drug interactions

- CONs:

- 15mg size of IR tablet is an awkward starting dose
- Accumulation of the neurotoxic morphine-3glucuronide metabolite in high doses and/or renal dysfunction often leads to adverse effects

Morphine Characteristics

- Peak concentration after IR dose is within 1 hour.
- Predominantly glucuronidated by the liver:
 - Morphine-6-glucuronide: 5x more potent
 - Morphine-3-glucuronide: neurotoxicity
 - Delirium, dysphoria, hallucinations
 - Myoclonic jerking
- Glucuronides are renally excreted
 - Avoid morphine for GFR <30mL/min

- Oxycodone
 - Less dependence on kidneys for elimination
 - "Cleaner" metabolites
 - No IV formulation in US
 - Slightly more potent than morphine
 - Use 2mg oxycodone when converting from 3mg morphine
 - I suggest a 1:1 conversion when going from oxycodone to morphine

- Hydrocodone
 - Less dependence on kidneys for elimination than morphine
 - "Cleaner" metabolites
 - Some metabolism to hydromorphone
 - Roughly as potent as morphine
 - Useful for relatively low opioid dose needs
 - Not commonly used in cancer pain and palliative care because of the combination with APAP
 - APAP limits the ability to increase the opioid dose

- Hydromorphone
 - IV and PO (IR & ER) formulations
 - More potent than morphine
 - Preferred over morphine in cases of:
 - Decreased GFR (but still some renal excretion)
 - Need for subcutaneous infusion
 - Hyperalgesia or adverse effects from IV morphine
 - Some cases of hyperalgesia reported at high, prolonged doses as well

- Fentanyl
 - Metabolized to inactive metabolite
 - Good option in patients with severe renal impairment
 - Susceptible to multiple drug interactions
 - Transdermal patch can be considered 1:1 equivalent to IV infusion
 - Transdermal patches should only be used in patients with established opioid needs
 - Same with ER oral dosage of other opioids

Choosing An Opioid: Renal Insufficiency

- Morphine: not completely contraindicated, as CAN dose reduce for GFR<60 and monitor, but definitely if plan on ongoing &/or high doses with significant disease, choose something else
- In moderate/severe renal dysfunction, <u>fentanyl & methadone</u> are likely best choices
 - still use caution
- Oxycodone, hydromorphone can often be used in even moderate renal impairment
 - Initial doses must be lower than usual, and the size and frequency of dose escalations smaller

Choosing An Opioid: Liver Disease

- Hepatic insufficiency
 - All opioids have significant first pass-hepatic metabolism
 - Glucuronidation is more robust that Type 1 processes
 - AVOID: codeine, methadone, fentanyl
 - LOW & SLOW
 - Fentanyl or methadone are not contraindicated
 - Their doses must be much more conservative and dose adjustments made more slowly

Routine Opioid Adjunct Rx

- Scheduled Acetaminophen or NSAID, as appropriate
- Scheduled laxative (Senna and/or PEG)
- IN Naloxone (NARCAN®)
 - Prescribed naloxone more likely covered by insurance
 - Pharmacist can recommend/dispense under State's Standing Order
 - "Dosing confusion", "Grandchild mis-adventure"

Adding APAP and/or NSAIDs to Opioids

- Post-operative study showed that the addition of Acetaminophen (paracetamol, APAP) or NSAIDs decreased pain scores and rescue opioid needs by 25-33%.
- No consistent benefit of APAP over NSAIDs
- Consider:
 - GI, renal, CV risk of NSAIDs
 - Anti-coagulation status

Schedule Laxatives

- Laxatives should be scheduled for patients on opioids, not PRN. Adjust schedule prn.
 - Senna-docusate
 - PEG 17gm 1-2x daily
- Add laxatives PRN for constipation
 - Bisacodyl (tablets or suppository)
 - Magnesium Citrate
 - Naloxegol (PO) or methylnaltrexone (SC) (peripheral opioid antagonists)(\$\$)

Methadone for Pain

- A useful opioid analgesic, but is more difficult to use because it demonstrates:
 - Widely variable kinetics conversions between drugs are complex (4-20:1)
 - Long $t_{1/2}$: Slow to reach therapeutic plateau (1-2 weeks), and slow to be eliminated
 - Multiple drug interactions (CYP3A4/5, CYP2B6)
 - Can prolong the QTc
 - Increased risk of torsades de pointes)
 - Typically not started if QTc is >470 msec

Methadone Time to Steady-state

- The half-life of most opioids is about 3 hours, but for methadone and buprenorphine it is 3-5 DAYS
- Steady state is achieved for most oral opioids within 1-2 DAYS
- Steady state is achieved for a new regimen of methadone or buprenorphine after 1-2 WEEKS

Prescribing Methadone for Patients on Medication-assisted Therapy (MAT)

- Legal without MAT authorization <u>if used for</u> treating pain (DOCUMENT!): usually Q8H dose
- Legal in <u>hospital setting</u> to "maintain or detoxify a person as an incidental adjunct to medical or surgical treatment of conditions other than addiction, ..."
 - 21 CFR 1306.07
 - So MD can prescribe outpatient methadone MAT regimen to a patient hospitalized for other issues

