Principles of Pulmonary Drug Delivery

January 27, 2021

Christine A. Sorkness, Pharm.D. Professor of Pharmacy & Medicine (CHS) UW School of Pharmacy

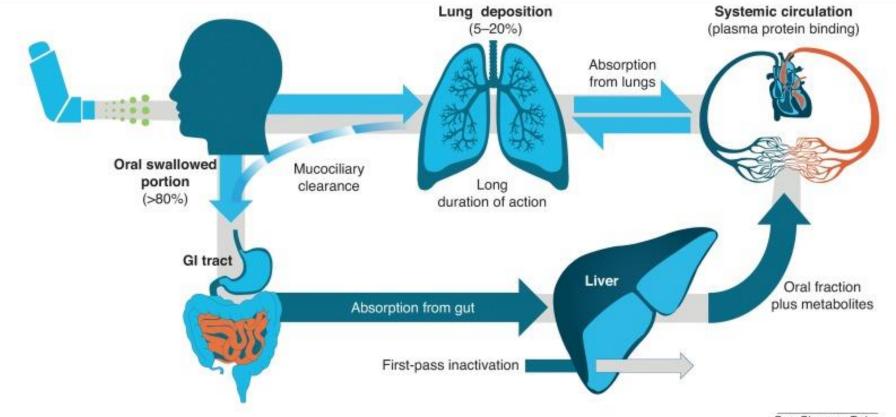
Learning Objectives

As a result of completing this lecture, the participant should be able to:

1.Discuss device-related and patient-related issues influencing pulmonary drug delivery.

2.Describe the advantages and disadvantages of spacers & valved holding chambers with metered-dose inhalers (MDIs).

3. Outline the major characteristics of marketed drug-powdered inhalers (DPIs).


4. Discuss issues related to nebulizer systems.

5. Outline drug classes administered by nebulizer systems

General Issues: The Lung as a Target Organ

- Anatomy of the lung/Airway geometry
- Cough reflex
- Mucous production
- Ciliary clearance
- Epithelial lining as a barrier
- Pulmonary blood flow

Disposition of Inhaled Glucocorticoids

Drug Discovery Today

Patient-Related Issues: Pulmonary Drug Delivery

- Age
- Gender
- Breathing pattern
- Posture
- Extent/severity of pulmonary disease
- Ability to use the selected drug delivery devices
- Concurrent mechanical ventilation

Influences on Particle Deposition in the Airways

- Particle/droplet properties
- Presence of other substances
 - Diluents (lactose in dry powder devices)
 - Surfactants (oleic acid, lecithin)
 - Propellants (HFA*)
- Breathing conditions
- Respiratory dimensions and geometry
- Drug delivery device (MDI vs DPI vs soft mist)

*HFA = hydrofluoroalkane

Inhaled Particles are Deposited by 3 Basic Mechanisms, Dependent on Particle Size

- Inertial impaction is the principal mechanism of large particle deposition and primarily occurs in the posterior pharynx (high airflow area) and upper airway
- Gravity sedimentation for particles 0.1-10 μm
- Brownian movement for particles < 0.1 μ m, resulting in deposition in bronchioles and alveoli

Ideal mass median aerodynamic diameter (MMD) = $2.8-4.3 \mu m$

Characteristics of an Ideal Respiratory Inhalation Delivery System

- Reproducible dose delivery to lungs across wide range of inspiratory flows
- Small particle size (2-5 microns)
- Easy to use
- Small size, easy to carry
- Multidose capability
- Cost-effective
- Built-in dose counter
- Supports rapid onset of drug action

Valve Illustration Proventil[®] HFA (Albuterol Sulfate Inhalation Aerosol)

Albuterol HFA MDIs

Brand*	<u>Manufacturer</u>	Inhaler Size	<u>Comments</u>
Multiple generic manufacturers now available Check package insert for priming and other information			
Pro Air HFA	Teva	200 puffs (90 mcg/puff)	Prime after 2 weeks; built in dose-counter;
Proventil HFA	Merck	200 puffs (90 mcg/puff)	Prime after 2 weeks; Built in dose-counter
Ventolin HFA	GSK	200 puffs (90 mcg/puff)	Prime after 2 weeks; discard 12 months after removing from pouch; built in dose-counter

Other Pulmonary Drugs Available as HFA MDIs

- Xopenex HFA[®] MDI (levalbuterol) SABA
- Atrovent HFA[®] MDI (ipratropuim) SAMA
- Asmanex HFA[®] MDI (mometasone) ICS
- Alvesco HFA® MDI (ciclesonide) ICS
- Flovent HFA[®] MDI (fluticasone) ICS
- Advair HFA[®] MDI (fluticasone/salmeterol) ICS/LAMA
- Symbicort HFA[®] MDI (budesonide/formoterol) ICS/LAMA
- Dulera HFA[®] MDI (mometasone/formoterol) ICS/LAMA
- Bevespi Aerosphere[®] MDI (glycopyrrolate / formoterol) – LAMA/LABA
- Breztri Aerosphere [®] MDI (budesonide/glycopyrrolate/ formoterol) – ICS/LAMA/LABA

^{*} SABA = short acting beta-agonist, SAMA = short acting muscarinic agent, LABA = long acting betaagonist, LAMA = long acting muscarinic agent, ICS = inhaled corticosteroid

2005 Wisconsin Act 398 (enacted 5/10/2006) – The Inhaler Law

- Allows students with asthma to carry and use their MDIs and DPIs at all times on school property
- Applies to private, parochial, and public schools
- Requires students to provide the school with written permission from their parents and physicians
- Releases the school district, board, and employee from any form of liability due to complying with the law
- The school cannot enforce a policy that contradicts the law

http://www.lungwi.org/wi/publicpolicy/inhaler.asp

MDI Techniques

Closed-mouth: Hold inhaler in mouth.

*Open-mouth: Hold inhaler 1 to 2 inches away.

Frequent Reinstruction is Necessary

*generally not recommended

NAEP Report, NHLBI, 1991: American Academy of Family Physicians

MDIs with Spacers & Valved Holding Chambers (VHC)

- Addition of a spacer reduces the velocity and size of the aerosol particles
- Obviates need for accurate coordination between actuation and inspiration
- Large particles impact in spacer or sediment due to ↓ velocity
- Propellant enveloping the drug particles evaporates
- Reduces oropharyngeal drug deposition important with ICS
- Reduces airborne aerosolization
- Many available products on the market

Factors Influencing Output from a MDI With a Spacer & Valved Holding Chamber (VHC)

- Valve control of the inlet and outlet
- Dead space between the inlet and outlet
- Material of the spacer (plastic, antistatic materials)
- Volume of the spacer
- Presence of a mask with the spacer

Recommendations on Spacers & VHCs

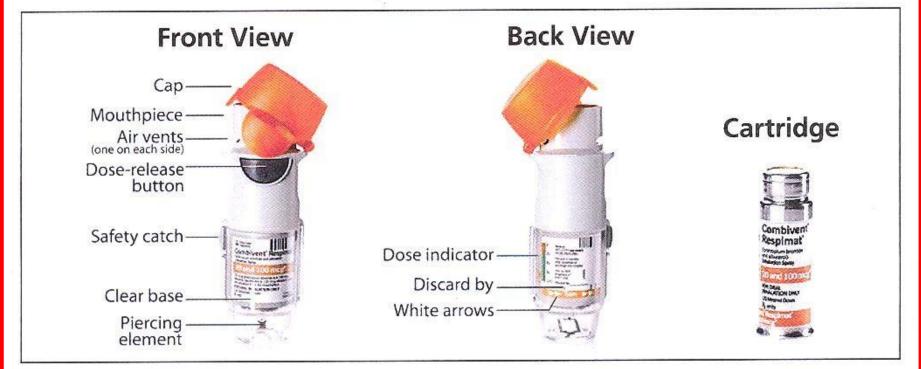
- Actuate only once into spacer/VHC per inhalation
- Use of a face mask may ↓ lung delivery by 50%
- If face mask is used, it should have a tight fit and allow 3-5 inhalations per actuation
- Rinse plastic VHCs once a month with low concentration of liquid dishwashing detergent (1:5,000 or 1-2 drops per cup of water) and let drip dry
- Static-free VHCs widely available

Asthmanefrin[®] 2.25% Inhalation Solution

- OTC alternative to Primatene[®] Mist CFC Inhaler (9/12)
- Racepinephrine 11.25mg / 0.5 ml (equivalent to 1% epinephrine)
- Used in a handheld electronic atomizer (EZ Breathe Atomizer)
- Adults and children \geq 4 years
 - 1-3 inhalations not more than every 3 hours
 - Do not use more than 12 inhalations / 24 hours
 - Use by children should be supervised by an adult
 - Starter kit = 1 atomizer + 10 vials (refills of 30 vials)
- Much less potent than albuterol; may be less effective in treating acute bronchospasm; shorter duration of action
- Pharmacy costs: \$26.94/30 vials

www.nephronpharm.com www.asthmanefrin.com

Primatene MIST Returns as OTC Asthma Inhaler


- Phased out in 2011 (Montreal Protocol banned CFC products); returned in 2019
- Primatene MIST delivers 0.125 mg epinephrine per spray with HFA propellant; 160 sprays per MDI
- Approved for temporary relief of mild symptoms of intermittent asthma in patients ≥ 12 years of age; max. 8 inhalations/24 hrs.
- Asthma/allergy groups expressed "deep concern" over FDA approval

http://www.Primatene.com/

Respimat Soft Mist Inhaler (SMI)

- Multidose, propellant-free, hand-held, liquid inhaler
- fraction of fine particles
- Mist exits inhaler more slowly and for a longer duration
- Combivent[®] (ipratropium/albuterol) SAMA/SABA
- Spiriva[®] (tiotropium) LAMA
- Stiolto[®] (tiotropium/olodaterol)- LAMA/LABA
- Striverdi[®] (olodaterol) LABA

The Combivent[®] Respimat[®] Inhaler

Dry Powder Inhalers (DPIs)

- Breath-actuated; requires minimal hand-lung coordination
- Powder dispersion into respirable particles dependent upon creation of turbulent flow ("flow-dependent")
- Requires adequate inspiratory flow rate to dispense the powder
- Resistance of the DPI is the limiting factor in determining PIFR that can be drawn through
- Typical PIFRs: 30-120 L/min
- The higher the DPI resistance, the greater the delivery of powder to the lower resp. tract
- Potential effect of humidity on some DPIs

Dry Powder Inhalers

Dose Storage

Capsule

Reservoir

Multi-Unit Dose Blister/tape HandiHaler (Boehringer Ingelheim) Neohaler (Novartis) Podhaler (Novartis) Breezhaler (Novartis)

DPI

Flexhaler (Astra) Twisthaler (Schering) Pressair (Circassia)

Diskus (Glaxo) Ellipta (Glaxo) Inhub (Mylan) Diskhaler (Glaxo) Relenza (zanamivir): influenza

Breath-Actuated DPI

- RespiClick Teva
 - ProAir (albuterol) SABA
 - AirDuo (salmeterol/fluticasone) LABA/ICS
- Redihaler Teva
 - Qvar (mometasone) ICS
- Pressair Circassia
 - Tudorza (aclidinium) LAMA
 - Duaklir (aclidinium/formoterol) LAMA/LABA
- Decreased requirement for hand-breath coordination
- Includes dose counter Discard at "0" or according to other specific instructions
- Does not require priming
- Do not use with a spacer or volume holding chamber

Digihaler[®] - Teva

- ProAir[®] (Albuterol 90mcg base) SABA
- AirDuo^{® (}Fluticasone/Salmeterol 113mcg/14mcg)
 ICS/LABA
- ArmonAir[®] (Fluticasone proprionate 113mcg) ICS
- Built in electronic module which detects, records, & stores inhaler events to mobile App; includes peak inspiratory flow rate (L/min)

Digihaler[®] - Teva

Aerosol Delivery Devices

Device

Optimal Inhalation Techniques

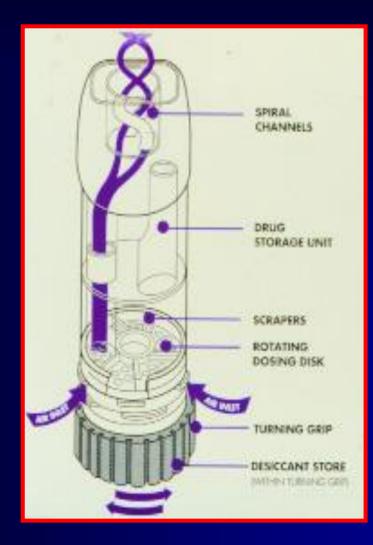
MDI

Slow (30 L/min or 3-5 sec) and deep inhalation, then 10 sec breathhold

DPI

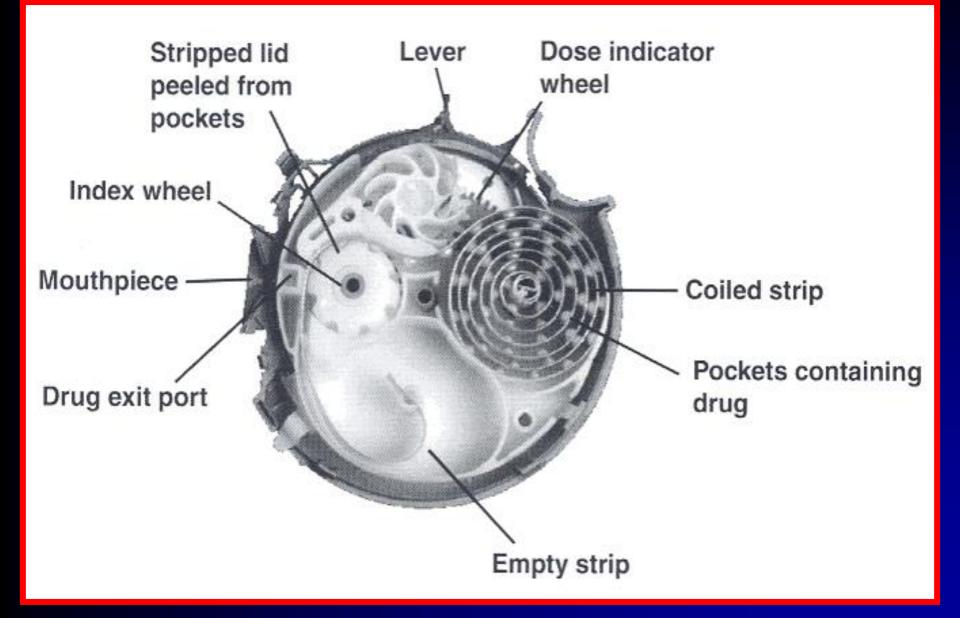
Rapid (≥ 60 L/min or 1-2 sec) deep inhalation
Min. effective inspiratory flow is device dependent

Patient Errors in Inhaler Use


- Most frequent MDI errors:
 - Coordination
 - Speed and/or depth of inspiration
 - No post inhalation breath-hold
- Most frequent DPI errors:
 - Incorrect preparation
 - No full expiration before inhalation
 - No post-inhalation breath-hold

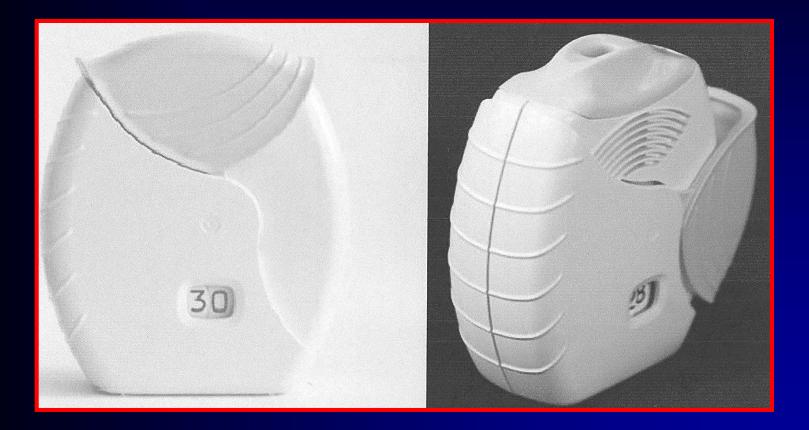
Sanchis J et al. Chest 2016; 150(2): 394-406

Flexhaler[®] (Astra)


- Dry powder breath-actuated device
- Optimal inspiratory flow rate of 60 L/min (high resistance device)
- Sensitive to ambient conditions, esp. moisture; contains lactose
- Dose indicator starts at 60 or 120 depending on strength and counts down to 0.
- Requires priming prior to initial use.
- Pulmicort (budesonide 90 mcg,180 mcg) ICS
- Rinse with water after each dose; spit out

Pulmicort Flexhaler

Diskus Device (Glaxo)

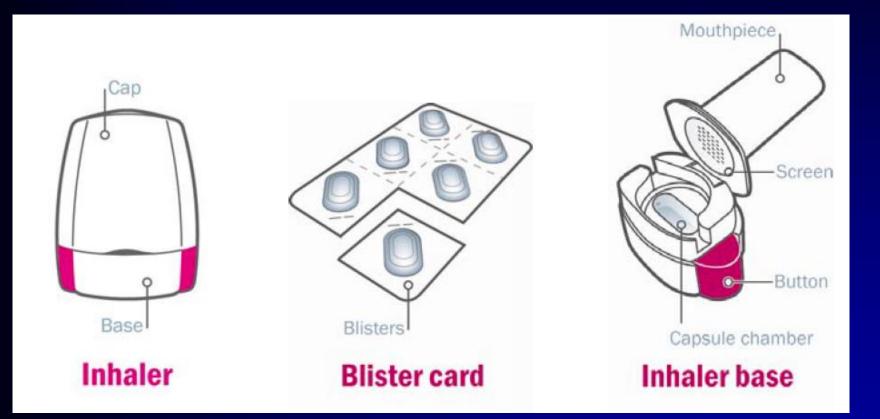

- DPI device of double-foil blister strips (60 doses per Diskus)
- Drug delivery dependent on inspiratory flow (requires 30-60 L/min)
- Indicator tells how many doses are left (numbers turn red when 5 doses left)
- Do not breathe into, nor wash, the device
- Activate and use Diskus[®] in a level, horizontal position
- Open, Click, Inhale, Close
- Delivers Serevent[®], Flovent[®], and Advair[®]

Ellipta Device (Glaxo)

- A multidose breath-activated DPI with moderate airflow resistance
- Contains a number of predispensed double-foil sealed blisters as strips (1 or 2 strips each containing 1 or 2 medications)
- Large dose counter; red flag when 9 doses remain and "0" when no further blisters remain
- Second flag to replace
- Drug delivery dependent on inspiratory flow (tested in asthma and COPD)
- Delivers Breo[®] (fluticasone/vilanterol), Incruse[®] (umeclidinium), Anoro[®] (umeclidinium and vilanterol), Arnuity [®] (fluticasone furoate), and Trelegy [®] (fluticasone furoate, umeclidinum, and vilanterol)

Ellipta Device with Mouthpiece Closed and Open

HandiHaler® (Boeringer Ingelheim)


- Dry powder inhalation device for delivery of Spiriva®
- Each Spiriva® capsule contains 18 mcg tiotropium and lactose monohydrate as the carrier; packaged in a blister card
- Avoid contact of powder with the eyes
- Components of the HandiHaler; dust cap, mouthpiece, base, piercing button, center chamber
- "Breathe in slowly and deeply, at a rate sufficient to hear the capsule vibrate, then hold breath"
- Repeat steps to get full dose

Twisthaler® (Schering Corp.)

- Dry powder cap-activated inhalation-driven device for delivery of Asmanax®
- Each inhalation delivers 110 or 220 mcg of mometasone
- Two main steps of administration
- Dose indicator window on the pink base, which "counts down" doses
- When the numbers in the dosing window read "01", this will be the last dose in the Twisthaler[®]
- "Take in a fast, deep breath and hold your breath for 10 seconds"
- Rinse mouth with water after use; spit out

Arcapta Neohaler: Indacaterol Inhalation Powder

TOBI Podhaler comes in a 28-day multipack that has everything you need for 1 treatment cycle^{1,*}

What's inside a 28-day pack?

1 4 WEEKLY PACKS, EACH PACK CONTAINING 7 BLISTER CARDS A total of 28 blister cards

- Each blister card contains 8 capsules
- Take 4 capsules for inhalation in the morning and 4 capsules for inhalation in the evening
- A total of 112 mg per dose

2 4 DISPOSABLE PODHALER DEVICES plus 1 backup Podhaler device

 When you start a new weekly (7-day) pack of capsules, use a new inhaler device

3 4 INHALER STORAGE CASES plus 1 backup

 When you start a new weekly (7-day) pack of capsules, use a new inhaler storage case

Types of Nebulizers

<u>Jet:</u> Consists of a nebulising chamber in which an aerosol is generated with a flow of gas provided either by an electrical compressor or compressed gas (air or oxygen); standard and breath enhanced systems

Ultrasonic: Self-contained electrical devices in which an aerosol is generated by vibrating fluid placed within them

Vibrating mesh or plate with several apertures: Faster, more expensive

Nebulizer Definitions

Aerosol output: mass per minute of particles in aerosol form produced by the nebulizer

Respirable particles: particles < 5 µm diameter

Respirable fraction: mass of respirable particles expressed as % aerosol output

Respirable output: mass of respirable particles produced per minute (aerosol output x resp. fraction)

Technical Factors Influencing Output from a Jet Nebulizer

- Nebulizer design
- Volume fill (usual 4-6 ml)
- Dynamic airflow through the nebulizer
- Environmental temperature
- Humidity
- Inhalation flow through the nebulizer
- Continuous or intermittent nebulization
- Solution or suspension of drug
- Viscosity, density, and surface tension of the drug

Patient-Related Factors Confounding Nebulizer Drug Delivery

- Interface between child and face mask
- Nasal breathing
- Low tidal volume, flow, and pressure
- Entrainment
- Irregular breathing
- Poor adherence

Characteristics of an Ideal Nebulizing System

- High output
- Short nebulization time
- High % of respirable droplets
- Reproducible performance
- Adaptable power source
- Easy to assemble and clean
- Quiet and attractive
- Portable/small
- Under control of patient

Nebulized Medications: Obstructive Pulmonary Diseases

- albuterol SABA
- cromolyn non-steroid anti-inflammatory
- ipratropium bromide SAMA
- albuterol & ipratropium (DuoNeb[®]) SABA & SAMA
- glycopyrrolate (Lonhala Magnair[®]) LAMA
- revefenacin (Yupelri[®]) LAMA
- levalbuterol (Xopenex[®]) SABA
- arformoterol (Brovana[®]) LABA
- formoterol fumarate (Perforomist[®]) LABA
- budesonide (Pulmicort Respules[®]) CS

Nebulized Medications: Cystic Fibrosis

- Aztreonam (Cayston[®]) antibiotic
 - Altera Nebulizer System
- Dornase Alfa (Pulmozyme[®]) mucolytic
 - Hudson T Updraft II or Marquest Acorn II with Pulmo-Aide Compressor
 - Pari LC Jet or Pari Baby with Pari Proneb Compressor
 - Durable Sidestream with MobilAire or Porta Neb
 - eRapid Nebulizer System
- Tobramycin (Tobi[®], Bethkis[®], Kitabis Pak[®]) antibiotic for pseudomonas aeruginosa lung infections in CF
 – Pari LC Plus with Pulmo-Aide Compressor
- Hypertonic Saline (3%, 6%, or 7%), via jet nebulizer

Other Nebulized Therapies

- Ribavirin (Virazole[®]) antiviral (RSV) via SPAG-2 nebulizer
- Natural bovine surfactant (Alveofact[®]) –neonatal respiratory distress syndrome
- Pentamadine (Nebupent[®]) antifungal (for PCP related to HIV). Pneumocystis <u>carinii</u> pneumonia renamed as jirovici
 - Respirgard II nebulizer
- Iloprost (Ventavis[®]) pulmonary hypertension
 - I-neb[®] Adaptive Aerosol Delivery System or Prodose AAD System
 - 2.5 5.0 mcg/dose with 6-9 doses per day while awake
- Treprostinil (Tyvaso[®]) pulmonary hypertension
 - TD-100 (ultrasonic, pulsed delivery device)
 - TD-300 (user-friendly enhancements)
 - 4 separate, equally-spaced Tx sessions/day (> 4 hours apart)
- Levodopa inhalation powder (Inbrija[®]) prn "off" episodes in Parkinson's Disease

Unlabeled Uses of Nebulized Medications

- Opioids (morphine, fentanyl) terminally ill patients with dyspnea
- Lidocaine anesthetic for bronchoscopy; asthma; difficult-to-control chronic cough
- Magnesium sulfate acute asthma exacerbations
- Liposomal Amphotericin B antifungal
- Colistin anti-infective for P. aeruginosa

Issues With Nebulized Drug Delivery

- Selection of nebulizer delivery system
- Intrapulmonary deposition rates
- Adverse reactions/patient tolerance
- Environmental contamination
- Bacterial contamination
- Administration with face mask or mouthpiece

COVID-19 Guidelines for Health Care Facilities

- During COVID-19, asthma treatment with and inhaler & spacer is preferred over nebulizer treatment whenever possible. MDI's are not considered an aerosol generating treatment.
- PFM may elicit/trigger a cough
- If nebulizer treatment is utilized
 - Staff should wear appropriate PPE
 - Face mask, eye protection/face shield, gloves, gown
 - Maintain 6 feet of distance from patient if possible
 - Treatment should be in a designated, "For Aerosol Treatment Only", room and cleaned & disinfected after each treatment/test

COVID-19 Guidelines in the Home

- If therapy cannot be administered via MDI and spacer, then
- Always administer nebulizer treatments in the same room with closed door
- Maintain 6 feet of distance from patient if possible
- Appropriate PPE should be worn (face mask, eye protection/face shield, gloves)
- No additional family members should be present
- Maintain proper cleaning and disinfection procedures for nebulizer and equipment

CDC.gov

General Age Requirements for Correct Use of Aerosol Delivery Device Types*

Aerosol Delivery Method Small-volume nebulizer MDI MDI with spacer or VHC** MDI with endotracheal tube Breath-actuated MDI DPI $\frac{\text{Minimum Age}}{\leq 2 \text{ yr}}$ $\geq 5 \text{ yr}$ < 5 yr Neonate $\geq 5 \text{ yr}$ $\geq 4 \text{ yr}$

**Mouthpiece if ≥4; facemask if 0-3 yrs. Recs inconsistent; cognitive/intellectual abilities should be considered in all ages

*Based on EPR-3 recommendations, NHLBI

Device Selection and Outcomes of Aerosol Therapy: Conclusions

- Devices used for delivery of bronchodilators and corticosteroids can be equally efficacious
- Selection of an aerosol delivery device for patients with asthma and COPD should be based on:
 - Device/drug availability
 - Clinical setting
 - Patient age and ability to use the device correctly
 - Device use with multiple medications
 - Cost and reimbursement
 - Drug administration time
 - Convenience in both outpatient & inpatient settings
 - Health provider and patient preference

Dolovich MB and Dhand R. Lancet 2011; 377:1032-45